Radiologia

Histórico da radiologia

Wilhelm Conrad Roentgen

A história da Radiologia começou em 1895 com a descoberta experimental dos raios-X pelo físico alemão Wilhelm Conrad Roentgen. À época as aplicações médicas desta descoberta revolucionaram a medicina, pois havia se tornado possível a visão do interior dos pacientes. Com o passar dos anos, este método evoluiu e assumiu uma abrangência universal na pesquisa diagnóstica do ser humano.

A primeira radiografia foi realizada em 22 de dezembro de 1895. Neste dia, Roentgen pôs a mão esquerda de sua esposa Anna Bertha Roentgen no chassi, com filme fotográfico, fazendo incidir a radiação oriunda do tubo por cerca de 15 minutos. Revelado o filme, lá estavam, para confirmação de suas observações, a figura da mão de sua esposa e seus ossos dentro das partes moles menos densas.

No Brasil, a primeira radiografia realizada foi em 1896. A primazia é disputada por vários pesquisadores: SILVA RAMOS, em São Paulo; FRANCISCO PEREIRA NEVES, no Rio de Janeiro; ALFREDO BRITO, na Bahia; e físicos do Pará. Como a história não relata dia e mês, conclui-se que as diferenças cronológicas sejam muito pequenas.

 

Fonte: sociedade paulista de radiologia e imagem


A história de sucesso da mamografia (parte 1)

Fonte: KALAF, José Michel. Mamografia: uma história de sucesso e de entusiasmo científico. Radiol Bras. 2014 Jul/Ago;47(4):VII–VIII

A avaliação das mamas por métodos de imagem tem sido motivo de uma série de publicações recentes na literatura radiológica nacional. Neste editorial, relatamos a contribuição internacional, os primórdios do estudo mamográfico, uma apaixonante evolução da medicina diagnóstica.

ERA DOS PIONEIROS

Em 1913, Albert Salomon, um cirurgião alemão, publicou sua monografia sobre a utilidade dos estudos radiológicos dos espécimes de mastectomia, demonstrando a possibilidade de correlação anatomorradiológica e patológica das doenças da mama com diferencial de afecções benignas e malignas.

A este, seguiram-se trabalhos de vulto com Kleinschmidt, Warren, Vogel, Seabold, Gerson-Cohen, Leborgne, Egan, Gallagher, Martin, Dodd, Strax, e seus colegas. O intrigante trabalho desenvolvido pela renomada patologista Helen Ingleby, em 1950, incluía avaliação da mama e suas variações de acordo com a idade e estado menstrual, além da correlação radiológica micro e macroscópica com técnica de cortes histológicos seccionais da mama. Em 1949, Raul Leborgne revitaliza o interesse pela mamografia, chamando a atenção sobre a necessidade de qualificação técnica para o posicionamento e parâmetros radiológicos utilizados. Ele foi o pioneiro na melhoria da qualidade da imagem, além de dar ênfase especial ao diagnóstico diferencial entre calcificações benignas e malignas.

Filmes especiais, desenvolvidos pela Kodak, e a técnica de alta miliamperagem, com baixa quilovoltagem, padronizada por Robert Egan conduzem a um novo patamar de qualificação técnica. Em 1962, esse autor relata os primeiros 53 casos de câncer mamário ocultos, detectados em 2.000 exames mamográficos.

Nesta mesma época, John Martin e colegas demonstram que excelentes estudos mamográficos poderiam ser feitos e padronizados em clínicas privadas. Concomitantemente, o Colégio Americano de Radiologia (ACR) estabelece comitês e centros de treinamento em âmbito nacional. Este foi o embrião do Comitê de Mamografia do ACR.

ERA DO PROGRESSO TÉCNICO

A chamada Era do Progresso Técnico tem entre seus maiores contribuintes Gould, Wolfe, Gross, e seus colaboradores. O desenvolvimento da xeromamografia foi o resultado da colaboração entre indústria e medicina. Em 1960, Howard e Gould descrevem o aprimoramento de imagem obtido com a técnica de xeromamografia, e em 1966, John Wolfe apresenta sua grande experiência com o uso de xeromamografia na Quinta Conferência sobre Mamografia, na Universidade de Emory, em Atlanta.

Tamanho foi o interesse que o ACR solicitou à Xerox a instituição de programas de pesquisas avançadas com o método, com novos ensaios clínicos, e com a contribuição de Wolfe, Martin e Gloria Frankl. É importante salientar que já naquela época Wolfe classificava os sinais sutis de câncer mamário e sua relação com a densidade do parênquima mamário.

Em 1965, Charles Gross, de Estrasburgo, França, desenvolve a primeira unidade dedicada à mamografia. Engenhosamente, este aparelho tinha um tubo de raios X de molibdênio com 0,7 mm de ponto focal, proporcionando elevado contraste diferencial entre parênquima, gordura e microcalcificações, e um apropriado sistema de compressão constituía complemento importante. Gross trabalha com grande dedicação, sempre chamando a atenção para o grande potencial da mamografia na detecção de câncer oculto.


A história de sucesso da mamografia (parte 2)

Fonte: KALAF, José Michel. Mamografia: uma história de sucesso e de entusiasmo científico. Radiol Bras. 2014 Jul/Ago;47(4):VII–VIII

ERA MODERNA

A Era Moderna, como ficou conhecida, conta com a contribuição de Price, Butler, Ostrum, Becker, Isard, Moskowitz, Sickles, Kopans, Homer, Tabár, e seus colaboradores, entre outros.

Em 1970, Price e Butler, utilizando écrans de alta definição e filmes industriais, obtêm grande sucesso na redução dos níveis de radiação. Neste aspecto, as empresas Kodak e a Dupont são responsáveis pela grande contribuição técnica.

Em 1974, Myron Moskowitz e seus colaboradores apresentam resultados preliminares sobre rastreamento mamográfico e chamam a atenção da comunidade médica a respeito da capacidade da mamografia em diagnosticar câncer minimante invasivo.

Em 1977, Sickles, Kunio Doi e Genant publicam os resultados sobre magnificação mamográfica, enfatizando a necessidade de adição permanente de novos dispositivos nos aparelhos de mamografia, tamanha a sua importância. Sickles insiste na capacitação técnica e no constante aprimoramento. Enfatiza a necessidade de diagnosticar tumores malignos não só pelos sinais clássicos, mas também por sinais indiretos e menos evidentes. Já naquela época populariza o conceito da unidade móvel de mamografia em vans(17).

Em 1976, Frank, Ferris e Steer descrevem sistema de marcação pré-operatória com agulhamento metálico de lesões não palpáveis na mamografia, e em 1980, Kopans e DeLuca exemplificam o sistema aprimorado deste método. Atualmente, as agulhas utilizadas recebem o nome de agulhas de Kopans(18).

Em 1985, László Tabár e colaboradores descrevem os resultados obtidos com rastreamento de 134.867 mulheres entre 40 e 79 anos, a partir de uma única imagem obtida em posicionamento oblíqua-mediolateral, verificando redução de 31% de mortalidade.

Tabár desenvolve incansável operosidade científica, com inúmeras publicações, conferências e cursos. Também promove vários cursos na área de epidemiologia, rastreamento, diagnóstico precoce e estabelece novos conceitos em correlação clínico-radiológico-patológica, com avaliação sistematizada de cortes seccionais de espécimes e achados mamográficos(19). Além dele, numerosos outros radiologistas devotam sua grande experiência ao ensino e divulgação da mamografia. Nesse campo, podemos destacar Eklund, Feig, Logan, Alcon, e Paulus.

MAMOGRAFIA DIGITAL

Em setembro de 1991, sob os auspícios do Instituto Nacional de Saúde dos Estados Unidos, e atendendo ao consenso de especialistas em diagnóstico mamário, fica estabelecida a prioridade de investimentos para o desenvolvimento da mamografia digital.

Já, naquela década, havia um excepcional desenvolvimento de tecnologia digital, em todos os campos da radiologia, incluindo a mamografia.

Em junho de 1996, a Food and Drug Administration (FDA) publica instruções normativas para as empresas interessadas, com orientação quanto aos ensaios clínicos, no sentido de obter aprovação oficial para a comercialização de equipamentos de mamografia digital. A FDA estima que a análise comparativa do estudo de no mínimo 520 mulheres, sendo 260 com achados normais e 260 com achados anormais, seriam suficientes para atingir os parâmetros pré-estabelecidos de avaliação. Estudos complementares são realizados e a análise detalhada do novo sistema confirma sua excelência técnica, principalmente na aquisição, equalização, apresentação e pós-processamento de imagens(14).

Primeiro equipamento digital

A partir de 2000, o Senographe 2000 D é aprovado pela FDA. O equipamento de mamografia digital de aquisição direta é composto por um gerador de raios X com características semelhantes ao do sistema convencional. A grande inovação consiste na introdução de um controlador computadorizado (com controle automatizado de qualidade) e a substituição do sistema filme/écran por um detector eletrônico altamente diferenciado e eficaz na absorção do feixe de raios X.

Atualmente, várias empresas se dedicam ao desenvolvimento e comercialização de mamógrafos digitais, sistemas auxiliares de diagnóstico auxiliar por computação (CAD) e tomossíntese mamária, esta aprovada em 2011 pela FDA.

REFERÊNCIAS
1. Pinheiro DJPC, Elias S, Nazário ACP. Linfonodos axilares em pacientes com câncer de mama: avaliação ultrassonográfica. Radiol Bras. 2014;47:240–4.
2. Badan GM, Roveda Júnior D, Ferreira CAP, et al. Auditoria interna completa do serviço de mamografia em uma instituição de referência em imaginologia mamária. Radiol Bras. 2014;47:74–8.
3. Valentim MH, Monteiro V, Marques JC. Carcinoma neuroendócrino primário da mama: relato de caso e revisão da literatura. Radiol Bras. 2014;47:125–7.
4. Bitencourt AGV, Lima ENP, Chojniak R, et al. Correlação entre resultado do PET/CT e achados histológicos e imuno-histoquímicos em carcinomas mamários. Radiol Bras. 2014;47:67–73.
5. Rodrigues DCN, Freitas-Junior R, Corrêa RS, et al. Avaliação do desempenho dos centros de diagnóstico na classificação dos laudos mamográficos em rastreamento oportunista do Sistema Único de Saúde (SUS). Radiol Bras. 2013;46:149–55. 6. Coeli GNM, Reis HF, Bertinetti DR, et al. Carcinoma mucinoso da mama: ensaio iconográfico com correlação histopatológica. Radiol Bras. 2013;46:242–6.
7. Yamada AM, Melo ALKO, Lopes GP, et al. Edema bilateral das mamas secundário a obstrução da veia cava superior e trombose de veia subclávia. Radiol Bras. 2013;46:252–4.
8. Goto RE, Pires SR, Medeiros RB. Identificação de parâmetros de qualidade de impressão para a garantia da detecção de estruturas presentes na mamografia digital. Radiol Bras. 2013;46:156–62.
9. Rocha RD, Pinto RR, Aquino D, et al. Passo-a-passo da core biópsia de mama guiada por ultrassonografia: revisão e técnica. Radiol Bras. 2013;46:234–41.
10. Pardal RC, Abrantes AFL, Ribeiro LPV, et al. Rastreio de lesões mamárias: estudo comparativo entre a mamografia, ultrassonografia modo-B, elastografia e resultado histológico. Radiol Bras. 2013;46:214–20.
11. Badan GM, Roveda Júnior D, Ferreira CAP, et al. Valores preditivos positivos das categorias 3, 4 e 5 do Breast Imaging Reporting and Data System (BI-RADS®) em lesões mamárias submetidas a biópsia percutânea. Radiol Bras. 2013;46:209–13.Gold RH. The evolution of mammography. Radiol Clin North Am. 1992;30:1–19.
13. Kimme-Smith C. New and future developments in screen-film mammography equipment and techniques. Radiol Clin North Am. 1992;30:55–66.
14. Feig SA. Mammography equipment: principles, features, selection. Radiol Clin North Am. 1987;25:897–911.
15. Leborgne R. Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas. Am J Roentgenol Radium Ther. 1951;65:1–11.
16. Wolfe JN, Albert S, Belle S, et al. Breast parenchymal patterns and their relationship to risk for having or developing carcinoma. Radiol Clin North Am. 1983;21:127–36.
17. Sickles EA. Mammographic features of 300 consecutive nonpalpable breast cancers. AJR Am J Roentgenol. 1986;146:661–3.
18. Kopans DB. Breast imaging. Philadelphia: JB Lippincott; 1989.
19. Tabar L, Fagerberg G, Duffy SW, et al. The Swedish two county trial of mammographic screening for breast cancer: recent results and calculation of benefit. J Epidemiol Community Health. 1989;43:107–14.

 


A importância do conhecimento sobre radioproteção pelos profissionais da radiologia (Parte 3)

Fonte:  SEARES , Marcelo Costa; FERREIRA, Carlos Alexsandro. A importância do conhecimento sobre radioproteção pelos profissionais da radiologia. CEFET/SC Núcleo de Tecnologia Clínica, Florianópolis, Brasil.

Resultado de imagem para proteção radiologia

Formas de radioproteção

A proteção radiológica dos trabalhadores ocupacionalmente expostos à radiação ionizante (Raiosx diagnósticos, Medicina Nuclear, Radioterapia e Odontologia) é essencial para minimizar o surgimento de efeitos deletérios das radiações. As formas de se reduzir a possível exposição dos trabalhadores são: Tempo, Distância e Blindagem.

Tempo de exposição

A redução do tempo de exposição ao mínimo necessário, para uma determinada técnica de exames, é a maneira mais prática para se reduzir a exposição à radiação ionizante. No gerenciamento de um serviço de radiologia, o rodízio dos técnicos durante os procedimentos de radiografia em leito de UTI é uma forma de limitar-se a exposição dos técnicos aos raios-x.

Distância da fonte

Quanto mais distante da fonte de radiação, menor a intensidade do feixe. A intensidade de radiação é proporcional ao inverso do quadrado da distância entre o ponto e a fonte.

Blindagem para pacientes 

A proteção dos pacientes através do uso de acessórios é obrigatória. O protetor de gônadas deve ser usado em pacientes em idade reprodutiva, se a linha das gônadas não estiver próxima do campo primário de irradiação, para que não ocorra interferência no exame. A utilização de saiotes plumbíferos em pacientes submetidos aos raios-x é uma forma barata e eficaz de proteção.

Blindagem das áreas

As barreiras de proteção radiológica devem ser calculadas inicialmente para a exposição primária do feixe de radiação, de radiação espalhada e da radiação de fuga. As salas de raios-x devem ser blindadas com chumbo ou equivalente em barita. Pisos e tetos em concreto podem ser considerados como blindagens, dependendo da espessura da laje, tipo concreto (vazado ou não), distância da fonte, geometria do feixe e fator de ocupação das áreas acima e abaixo da sala de raios-x. O chumbo possui densidade 11,35 g/cm3 , o concreto de 2,2 g/cm3 . A escolha do uso da massa baritada com relação ao lençol de chumbo está em geral relacionada à minimização de custo.

Considerações finais

A radio proteção tem a finalidade precípua de fornecer condições seguras para atividades que envolvam radiações ionizantes. Condições básicas de segurança devem ser observadas no exercício profissional. O presente artigo revisou as primeiras observações até o primeiro relato histórico, feito em 1902, sobre os efeitos biológicos das radiações, passando pelas descobertas realizadas pela radio biologia: os efeitos deletérios das radiações. Baseado nessas descobertas fez-se necessário elaborar princípios de proteção radiológica e desenvolver formas de radio proteção aplicáveis na rotina dos serviços de radiologia.

Cabe ao profissional ter conhecimento pleno do assunto. Este artigo foi elaborado para revisar conhecimentos, reforçando conceitos e pressupostos científicos. Propõese o seu aprofundamento através de revisão de normas e diretrizes relacionadas à radio proteção estabelecidas pela Vigilância Sanitária e CNEN, visto que determinados assuntos deixaram de ser abordados no presente artigo. As diretrizes básicas relacionadas à radio proteção encontram-se na norma NE03.01 do CENEN.

Referências [1] BIRAL, Antônio Renato, Radiações ionizantes para médicos físicos e leigos, Florianópolis: Insular: 2002. [2] DIMENSTEIN, Renato; HORNOS, Yvone M. Mascarenhas, Manual de proteção radiológica aplicada ao radiodiagnóstico, São Paulo: Editora SENAC, 2001.


Parcerias e convênios

Política de Bolsas de estudos

Aumentou o número de empresas conveniadas e/ou parceiras do CENIB que incluem benefícios em forma de descontos em todos os cursos para os seus funcionários, dependentes e cônjuges, e também para seus trabalhadores terceirizados. Com as devidas comprovações legais e atualizadas os funcionários e/ou servidores terão até 20% de desconto  (para o curso Técnico em Radiologia), e até 15% para os demais cursos até as datas dos vencimentos promocionais. Veja as instituições abaixo:

Receba o Boletim Informativo

Fale conosco