• Inicial

A história de sucesso da mamografia (parte 2)

Fonte: KALAF, José Michel. Mamografia: uma história de sucesso e de entusiasmo científico. Radiol Bras. 2014 Jul/Ago;47(4):VII–VIII

ERA MODERNA

A Era Moderna, como ficou conhecida, conta com a contribuição de Price, Butler, Ostrum, Becker, Isard, Moskowitz, Sickles, Kopans, Homer, Tabár, e seus colaboradores, entre outros.

Em 1970, Price e Butler, utilizando écrans de alta definição e filmes industriais, obtêm grande sucesso na redução dos níveis de radiação. Neste aspecto, as empresas Kodak e a Dupont são responsáveis pela grande contribuição técnica.

Em 1974, Myron Moskowitz e seus colaboradores apresentam resultados preliminares sobre rastreamento mamográfico e chamam a atenção da comunidade médica a respeito da capacidade da mamografia em diagnosticar câncer minimante invasivo.

Em 1977, Sickles, Kunio Doi e Genant publicam os resultados sobre magnificação mamográfica, enfatizando a necessidade de adição permanente de novos dispositivos nos aparelhos de mamografia, tamanha a sua importância. Sickles insiste na capacitação técnica e no constante aprimoramento. Enfatiza a necessidade de diagnosticar tumores malignos não só pelos sinais clássicos, mas também por sinais indiretos e menos evidentes. Já naquela época populariza o conceito da unidade móvel de mamografia em vans(17).

Em 1976, Frank, Ferris e Steer descrevem sistema de marcação pré-operatória com agulhamento metálico de lesões não palpáveis na mamografia, e em 1980, Kopans e DeLuca exemplificam o sistema aprimorado deste método. Atualmente, as agulhas utilizadas recebem o nome de agulhas de Kopans(18).

Em 1985, László Tabár e colaboradores descrevem os resultados obtidos com rastreamento de 134.867 mulheres entre 40 e 79 anos, a partir de uma única imagem obtida em posicionamento oblíqua-mediolateral, verificando redução de 31% de mortalidade.

Tabár desenvolve incansável operosidade científica, com inúmeras publicações, conferências e cursos. Também promove vários cursos na área de epidemiologia, rastreamento, diagnóstico precoce e estabelece novos conceitos em correlação clínico-radiológico-patológica, com avaliação sistematizada de cortes seccionais de espécimes e achados mamográficos(19). Além dele, numerosos outros radiologistas devotam sua grande experiência ao ensino e divulgação da mamografia. Nesse campo, podemos destacar Eklund, Feig, Logan, Alcon, e Paulus.

MAMOGRAFIA DIGITAL

Em setembro de 1991, sob os auspícios do Instituto Nacional de Saúde dos Estados Unidos, e atendendo ao consenso de especialistas em diagnóstico mamário, fica estabelecida a prioridade de investimentos para o desenvolvimento da mamografia digital.

Já, naquela década, havia um excepcional desenvolvimento de tecnologia digital, em todos os campos da radiologia, incluindo a mamografia.

Em junho de 1996, a Food and Drug Administration (FDA) publica instruções normativas para as empresas interessadas, com orientação quanto aos ensaios clínicos, no sentido de obter aprovação oficial para a comercialização de equipamentos de mamografia digital. A FDA estima que a análise comparativa do estudo de no mínimo 520 mulheres, sendo 260 com achados normais e 260 com achados anormais, seriam suficientes para atingir os parâmetros pré-estabelecidos de avaliação. Estudos complementares são realizados e a análise detalhada do novo sistema confirma sua excelência técnica, principalmente na aquisição, equalização, apresentação e pós-processamento de imagens(14).

Primeiro equipamento digital

A partir de 2000, o Senographe 2000 D é aprovado pela FDA. O equipamento de mamografia digital de aquisição direta é composto por um gerador de raios X com características semelhantes ao do sistema convencional. A grande inovação consiste na introdução de um controlador computadorizado (com controle automatizado de qualidade) e a substituição do sistema filme/écran por um detector eletrônico altamente diferenciado e eficaz na absorção do feixe de raios X.

Atualmente, várias empresas se dedicam ao desenvolvimento e comercialização de mamógrafos digitais, sistemas auxiliares de diagnóstico auxiliar por computação (CAD) e tomossíntese mamária, esta aprovada em 2011 pela FDA.

REFERÊNCIAS
1. Pinheiro DJPC, Elias S, Nazário ACP. Linfonodos axilares em pacientes com câncer de mama: avaliação ultrassonográfica. Radiol Bras. 2014;47:240–4.
2. Badan GM, Roveda Júnior D, Ferreira CAP, et al. Auditoria interna completa do serviço de mamografia em uma instituição de referência em imaginologia mamária. Radiol Bras. 2014;47:74–8.
3. Valentim MH, Monteiro V, Marques JC. Carcinoma neuroendócrino primário da mama: relato de caso e revisão da literatura. Radiol Bras. 2014;47:125–7.
4. Bitencourt AGV, Lima ENP, Chojniak R, et al. Correlação entre resultado do PET/CT e achados histológicos e imuno-histoquímicos em carcinomas mamários. Radiol Bras. 2014;47:67–73.
5. Rodrigues DCN, Freitas-Junior R, Corrêa RS, et al. Avaliação do desempenho dos centros de diagnóstico na classificação dos laudos mamográficos em rastreamento oportunista do Sistema Único de Saúde (SUS). Radiol Bras. 2013;46:149–55. 6. Coeli GNM, Reis HF, Bertinetti DR, et al. Carcinoma mucinoso da mama: ensaio iconográfico com correlação histopatológica. Radiol Bras. 2013;46:242–6.
7. Yamada AM, Melo ALKO, Lopes GP, et al. Edema bilateral das mamas secundário a obstrução da veia cava superior e trombose de veia subclávia. Radiol Bras. 2013;46:252–4.
8. Goto RE, Pires SR, Medeiros RB. Identificação de parâmetros de qualidade de impressão para a garantia da detecção de estruturas presentes na mamografia digital. Radiol Bras. 2013;46:156–62.
9. Rocha RD, Pinto RR, Aquino D, et al. Passo-a-passo da core biópsia de mama guiada por ultrassonografia: revisão e técnica. Radiol Bras. 2013;46:234–41.
10. Pardal RC, Abrantes AFL, Ribeiro LPV, et al. Rastreio de lesões mamárias: estudo comparativo entre a mamografia, ultrassonografia modo-B, elastografia e resultado histológico. Radiol Bras. 2013;46:214–20.
11. Badan GM, Roveda Júnior D, Ferreira CAP, et al. Valores preditivos positivos das categorias 3, 4 e 5 do Breast Imaging Reporting and Data System (BI-RADS®) em lesões mamárias submetidas a biópsia percutânea. Radiol Bras. 2013;46:209–13.Gold RH. The evolution of mammography. Radiol Clin North Am. 1992;30:1–19.
13. Kimme-Smith C. New and future developments in screen-film mammography equipment and techniques. Radiol Clin North Am. 1992;30:55–66.
14. Feig SA. Mammography equipment: principles, features, selection. Radiol Clin North Am. 1987;25:897–911.
15. Leborgne R. Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas. Am J Roentgenol Radium Ther. 1951;65:1–11.
16. Wolfe JN, Albert S, Belle S, et al. Breast parenchymal patterns and their relationship to risk for having or developing carcinoma. Radiol Clin North Am. 1983;21:127–36.
17. Sickles EA. Mammographic features of 300 consecutive nonpalpable breast cancers. AJR Am J Roentgenol. 1986;146:661–3.
18. Kopans DB. Breast imaging. Philadelphia: JB Lippincott; 1989.
19. Tabar L, Fagerberg G, Duffy SW, et al. The Swedish two county trial of mammographic screening for breast cancer: recent results and calculation of benefit. J Epidemiol Community Health. 1989;43:107–14.

 


A importância do conhecimento sobre radioproteção pelos profissionais da radiologia (Parte 3)

Fonte:  SEARES , Marcelo Costa; FERREIRA, Carlos Alexsandro. A importância do conhecimento sobre radioproteção pelos profissionais da radiologia. CEFET/SC Núcleo de Tecnologia Clínica, Florianópolis, Brasil.

Resultado de imagem para proteção radiologia

Formas de radioproteção

A proteção radiológica dos trabalhadores ocupacionalmente expostos à radiação ionizante (Raiosx diagnósticos, Medicina Nuclear, Radioterapia e Odontologia) é essencial para minimizar o surgimento de efeitos deletérios das radiações. As formas de se reduzir a possível exposição dos trabalhadores são: Tempo, Distância e Blindagem.

Tempo de exposição

A redução do tempo de exposição ao mínimo necessário, para uma determinada técnica de exames, é a maneira mais prática para se reduzir a exposição à radiação ionizante. No gerenciamento de um serviço de radiologia, o rodízio dos técnicos durante os procedimentos de radiografia em leito de UTI é uma forma de limitar-se a exposição dos técnicos aos raios-x.

Distância da fonte

Quanto mais distante da fonte de radiação, menor a intensidade do feixe. A intensidade de radiação é proporcional ao inverso do quadrado da distância entre o ponto e a fonte.

Blindagem para pacientes 

A proteção dos pacientes através do uso de acessórios é obrigatória. O protetor de gônadas deve ser usado em pacientes em idade reprodutiva, se a linha das gônadas não estiver próxima do campo primário de irradiação, para que não ocorra interferência no exame. A utilização de saiotes plumbíferos em pacientes submetidos aos raios-x é uma forma barata e eficaz de proteção.

Blindagem das áreas

As barreiras de proteção radiológica devem ser calculadas inicialmente para a exposição primária do feixe de radiação, de radiação espalhada e da radiação de fuga. As salas de raios-x devem ser blindadas com chumbo ou equivalente em barita. Pisos e tetos em concreto podem ser considerados como blindagens, dependendo da espessura da laje, tipo concreto (vazado ou não), distância da fonte, geometria do feixe e fator de ocupação das áreas acima e abaixo da sala de raios-x. O chumbo possui densidade 11,35 g/cm3 , o concreto de 2,2 g/cm3 . A escolha do uso da massa baritada com relação ao lençol de chumbo está em geral relacionada à minimização de custo.

Considerações finais

A radio proteção tem a finalidade precípua de fornecer condições seguras para atividades que envolvam radiações ionizantes. Condições básicas de segurança devem ser observadas no exercício profissional. O presente artigo revisou as primeiras observações até o primeiro relato histórico, feito em 1902, sobre os efeitos biológicos das radiações, passando pelas descobertas realizadas pela radio biologia: os efeitos deletérios das radiações. Baseado nessas descobertas fez-se necessário elaborar princípios de proteção radiológica e desenvolver formas de radio proteção aplicáveis na rotina dos serviços de radiologia.

Cabe ao profissional ter conhecimento pleno do assunto. Este artigo foi elaborado para revisar conhecimentos, reforçando conceitos e pressupostos científicos. Propõese o seu aprofundamento através de revisão de normas e diretrizes relacionadas à radio proteção estabelecidas pela Vigilância Sanitária e CNEN, visto que determinados assuntos deixaram de ser abordados no presente artigo. As diretrizes básicas relacionadas à radio proteção encontram-se na norma NE03.01 do CENEN.

Referências [1] BIRAL, Antônio Renato, Radiações ionizantes para médicos físicos e leigos, Florianópolis: Insular: 2002. [2] DIMENSTEIN, Renato; HORNOS, Yvone M. Mascarenhas, Manual de proteção radiológica aplicada ao radiodiagnóstico, São Paulo: Editora SENAC, 2001.


A história de sucesso da mamografia (parte 1)

Fonte: KALAF, José Michel. Mamografia: uma história de sucesso e de entusiasmo científico. Radiol Bras. 2014 Jul/Ago;47(4):VII–VIII

A avaliação das mamas por métodos de imagem tem sido motivo de uma série de publicações recentes na literatura radiológica nacional. Neste editorial, relatamos a contribuição internacional, os primórdios do estudo mamográfico, uma apaixonante evolução da medicina diagnóstica.

ERA DOS PIONEIROS

Em 1913, Albert Salomon, um cirurgião alemão, publicou sua monografia sobre a utilidade dos estudos radiológicos dos espécimes de mastectomia, demonstrando a possibilidade de correlação anatomorradiológica e patológica das doenças da mama com diferencial de afecções benignas e malignas.

A este, seguiram-se trabalhos de vulto com Kleinschmidt, Warren, Vogel, Seabold, Gerson-Cohen, Leborgne, Egan, Gallagher, Martin, Dodd, Strax, e seus colegas. O intrigante trabalho desenvolvido pela renomada patologista Helen Ingleby, em 1950, incluía avaliação da mama e suas variações de acordo com a idade e estado menstrual, além da correlação radiológica micro e macroscópica com técnica de cortes histológicos seccionais da mama. Em 1949, Raul Leborgne revitaliza o interesse pela mamografia, chamando a atenção sobre a necessidade de qualificação técnica para o posicionamento e parâmetros radiológicos utilizados. Ele foi o pioneiro na melhoria da qualidade da imagem, além de dar ênfase especial ao diagnóstico diferencial entre calcificações benignas e malignas.

Filmes especiais, desenvolvidos pela Kodak, e a técnica de alta miliamperagem, com baixa quilovoltagem, padronizada por Robert Egan conduzem a um novo patamar de qualificação técnica. Em 1962, esse autor relata os primeiros 53 casos de câncer mamário ocultos, detectados em 2.000 exames mamográficos.

Nesta mesma época, John Martin e colegas demonstram que excelentes estudos mamográficos poderiam ser feitos e padronizados em clínicas privadas. Concomitantemente, o Colégio Americano de Radiologia (ACR) estabelece comitês e centros de treinamento em âmbito nacional. Este foi o embrião do Comitê de Mamografia do ACR.

ERA DO PROGRESSO TÉCNICO

A chamada Era do Progresso Técnico tem entre seus maiores contribuintes Gould, Wolfe, Gross, e seus colaboradores. O desenvolvimento da xeromamografia foi o resultado da colaboração entre indústria e medicina. Em 1960, Howard e Gould descrevem o aprimoramento de imagem obtido com a técnica de xeromamografia, e em 1966, John Wolfe apresenta sua grande experiência com o uso de xeromamografia na Quinta Conferência sobre Mamografia, na Universidade de Emory, em Atlanta.

Tamanho foi o interesse que o ACR solicitou à Xerox a instituição de programas de pesquisas avançadas com o método, com novos ensaios clínicos, e com a contribuição de Wolfe, Martin e Gloria Frankl. É importante salientar que já naquela época Wolfe classificava os sinais sutis de câncer mamário e sua relação com a densidade do parênquima mamário.

Em 1965, Charles Gross, de Estrasburgo, França, desenvolve a primeira unidade dedicada à mamografia. Engenhosamente, este aparelho tinha um tubo de raios X de molibdênio com 0,7 mm de ponto focal, proporcionando elevado contraste diferencial entre parênquima, gordura e microcalcificações, e um apropriado sistema de compressão constituía complemento importante. Gross trabalha com grande dedicação, sempre chamando a atenção para o grande potencial da mamografia na detecção de câncer oculto.


A importância do conhecimento sobre radioproteção pelos profissionais da radiologia (Parte 2)

Fonte:  SEARES , Marcelo Costa; FERREIRA, Carlos Alexsandro. A importância do conhecimento sobre radioproteção pelos profissionais da radiologia. CEFET/SC Núcleo de Tecnologia Clínica, Florianópolis, Brasil.

Resultado de imagem para radiologia perigo risco

Risco fetal

O risco fetal para mulheres grávidas expostas a radiação depende do período da gestação em que ocorreu a exposição. O resultado mais provável da exposição à radiação durante os dez primeiros dias pós-concepção é a morte uterina prematura. O feto é mais vulnerável a indução de anomalias congênitas pela radiação durante o primeiro trimestre, mais especificamente de 20 a 40 dias após a concepção. Considera-se que, quando o número de células do embrião é pequeno, a probabilidade de efeito é maior, pois a multiplicação celular é mais intensa. A microcefalia induzida pela radiação é o efeito mais provável, quando a exposição ocorre no período gestacional de 50 a 70 dias após a concepção.

No caso de retardo mental e de crescimento, isso ocorre para 70 a 150 dias. O maior efeito após 150 dias é o aumento do risco de malignidades infantis. O risco de anormalidades congênitas é baixo quando a exposição é menor do que 1mGy. Para doses maiores do que 1mGy recebidas pelo feto no segundo ou terceiro trimestre da gravidez, o risco de leucemia pode ser aumentado em mais de 40%. Para doses maiores do que 100mGy aumenta o risco de malformação congênita. Nesse caso considera-se a possibilidades de interrupção de gravidez.

Proteção radiológica

As normas de proteção radiológica, apesar de indicarem valores de limitação da dose, estabelecem o princípio fundamental conhecido como ALARA. No Brasil, as diretrizes básicas referentes à proteção radiológica estão relacionadas na norma do CNEN (Comissão Nacional de Energia Nuclear) NE-3.01 (Diretrizes Básicas de Radio proteção). Os princípios básicos da proteção radiológica estabelecem condições necessárias para que as atividades operacionais que utilizam radiações ionizantes sejam adotadas em benefício da sociedade, considerando-se a proteção dos trabalhadores, do público, do paciente e do meio ambiente. Esses princípios são Justificativa, Otimização e Limitação de dose. Fazem parte de documentos internacionais nos quais são estabelecidos conceitos atuais de proteção radiológica.

Princípio da justificativa

Onde houver atividade com exposição à radiação ionizante, deve-se justificá-la, levando-se em conta os benefícios advindos. Do ponto de vista médico, esse princípio aplica-se de modo que todo exame radiológico deve ser justificado individualmente, avaliando a necessidade da exposição e as características particulares do indivíduo envolvido. É proibida a exposição que não possa ser justificada, incluindo a exposição às radiações ionizantes com o objetivo único de demonstração, treinamento ou outros fins que contrariem o princípio da justificativa.

Principio da otimização

Toda exposição deve manter o nível mais baixo possível de radiação ionizante. Deve-se planejar rigorosamente as atividades com radiação ionizante, analisando-se em detalhe o que se pretende fazer e como será feito. Nessa análise deve-se estabelecer medidas de proteção necessárias para alcançar o nível de exposição menor possível. A proteção radiológica é otimizada quando as exposições empregam a menor dose possível de radiação, sem que haja perda na qualidade da imagem.

Princípio da limitação da dose

As doses de radiação não devem ser superiores aos limites estabelecidos pelas normas de radio proteção de cada país. Esse princípio aplica-se para limitação de dose nos trabalhadores ocupacionalmente expostos à radiação ionizante para o público em geral. O limite individual de dose para o trabalhador da área de radiações ionizantes é 50 mSv/ano e para o público em geral é de 1mSv/ano. O princípio da limitação da dose não se aplica aos pacientes, pois se considera que possíveis danos causados pelo emprego de radiações ionizantes sejam ultrapassados, em muito, pelo benefício proporcionado.

 


Parcerias e convênios

Política de Bolsas de estudos

Aumentou o número de empresas conveniadas e/ou parceiras do CENIB que incluem benefícios em forma de descontos em todos os cursos para os seus funcionários, dependentes e cônjuges, e também para seus trabalhadores terceirizados. Com as devidas comprovações legais e atualizadas os funcionários e/ou servidores terão até 20% de desconto  (para o curso Técnico em Radiologia), e até 15% para os demais cursos até as datas dos vencimentos promocionais. Veja as instituições abaixo:

Receba o Boletim Informativo

Fale conosco